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Abstract 

To a close approximation, the relative frequency of the 
space groups of molecular organic compounds is deter- 
mined by ease of packing. When the molecules are in 
general Wyckoff positions, the relative frequency anti- 
correlates with the degree of symmorphism. Somewhat 
different considerations apply if the molecule possesses 
and uses some inherent symmetry (-[, 2, m, 2/m,  222, 
m m , . . . )  [K~Ta~n'opo~lcKn~ (1955). O p r a m ~ e c K a a  
KpncTas~aOXHMm~. MOCKBa: I/I3~. AKa~. HayK; Ki- 
taigorodskii (1961). Organic Chemical Crystallography. 
New York: Consultants Bureau]. The observed frequen- 
cies are analysed in the light of the degree of symmor- 
phism and molecular symmetry. 

I. Symmorphism 

1.1. Symmorphic space groups 

The 73 symmorphic space groups are in one-to-one 
correspondence with the arithmetic crystal classes, and 
in fact conventional crystallographic symbolism did not 
distinguish between them until recently (de Wolff et al., 
1985). The symmorphic space groups are defined in vari- 
ous ways, of which three examples are: 

1. the space group corresponding to the zero solution of 
the Frobenius congruences is called a symmorphic space 
group (Engel, 1986, p. 155); 

2. a space group F is called symmorphic if one of its 
finite subgroups (and therefore an infinity of them) is of 
an order equal to the order of the point g r o u p / ~  (Ope- 
chowski, 1986, p. 255); 

3. a space group is called symmorphic if the coset repre- 
sentatives Wj can be chosen in such a way that they leave 
one common point fixed (Wondratschek, 1989, p. 717~ 

Even in context, these are pretty opaque. Fortunately, 
however, there is a nile of thumb by which the symmor- 
phic space groups can be recognized immediately from 
their standard Hermann-Mauguin symbols. Before the 
rule is stated (§ 1.1.1), it is necessary to consider some of 
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the conventions governing the construction of the space- 
group symbols from the symbols of the symmetry ele- 
ments constituting the space group. 

Volume A of International Tables for Crystallography 
distinguishes (Bertaut, 1989, pp. 49-68) three types of 
space-group symbols: (i) standard (short), (ii)full and 
(iii) extended, depending on the amount of symmetry in- 
formation included. In forming the symbols, priority is 
given to reflection planes and rotation (including rotation- 
inversion) axes. Screw axes and glide planes occur in the 
standard symbols only when their use is unavoidable; as 
far as possible, they are relegated to the full symbols and 
the extended symbols. The centre of symmetry is indi- 
cated only in one space-group symbol, P]-. The rule of 
thumb can now be enunciated. 

1.1.1. The rule of thumb. Symmorphic space groups are 
those whose standard (short) symbols do not contain glide 
planes or screw axes. 

Although the standard symbols of the symmorphic 
space groups do not contain screw axes or glide planes, 
this is a result of the manner in which the space-group 
symbols have been devised. Most symmorphic space 
groups do in fact contain screw axes and/or glide planes. 
This is immediately obvious for the symmorphic space 
groups based on centred cells; C2 contains equal numbers 
of diad rotation axes and diad screw axes, and Cm con- 
tains equal numbers of reflection planes and glide planes. 
In the more symmetric crystal systems, even symmor- 
phic space groups with primitive cells contain screw axes 
and/or glide planes; for example, P422 contains many 
diad screw axes and P4mra contains many glide planes. 
Such screw axes and glide planes can be regarded as re- 
sulting from the interactions of the symmetry operations 
indicated in the standard symbol with the translations of 
the unit cell. Bertaut (1989, Tables 4.1.2 and 4.1.3) gives 
representative examples but not a complete enumeration. 

1.1.2. Definitions. For brevity, throughout the remain- 
der of this paper, the symmetry elements 

2, 3, 4, 6; 2 = m ,  3 = 3 + 1 ,  4, 6 = 3 / m  

will be called syntropic; the elements 

21, 31,2, 41,3, 61,5; any glide plane 
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will be called antitropic; and the remaining elements 

1, 1; 42 = 2 + 21; 62,4 = 2 + 31,2, 63 = 21 + 3 

will be called atropic. These or similar words are already 
in use in botanical contexts, but no confusion can arise. 

In space groups with several symmetry elements, the 
elements may avoid each other or intersect or coincide. 
A symmetry element that lies fully in one or more others 
is called 'encumbered'; one that avoids, or at most inter- 
sects, others is called 'free' (Wilson, 1988, § 5). For ex- 
ample, in the space group Prom2, the diad axis lies in 
the intersection of the mirror planes and is 'encumbered', 
whereas, in Pna21, the diad screw axis avoids the glide 
planes and is thus 'free'. 'Free' centres of symmetry occur 
in only three space groups (P1, P21/c, Pbca). 

Adjectives like 'rare', 'common', 'frequent' are to be 
taken as relative to space groups in the immediate neigh- 
bourhood of the space group under discussion. 

1.2. 'Antimorphic" space groups 

It would be nice to define in each arithmetic crys- 
tal class (Wilson, 1992a) an 'antimorphic' space group, 
one that departs as far as possible from full sym- 
morphism - one that contains no syntropic symme- 
try elements. This is often possible; familiar examples 
are P21, Pc, P21/c, Pbca. The only fully 'antimorphic' 
space group with a centred cell is Cc. There is no formal 
definition of 'antimorphic' and occasionally there may be 
more than one 'antimorphic' candidate; the most obvious 
example is the pair Pca21 and Pna21. It is reasonable to 
choose Pna21 as in it the diad axis is 'free' (§ 1.1.2). 

1.3. Degrees of symmorphism 

Space groups can be classified by the extent to which 
they tend to symmorphism or antimorphism. If they con- 
rain only the syntropic elements k and/or k, where k = 2, 
3, 4 or 6, they are fully symmorphic. The fully antimor- 
phic space groups contain only antitropic glide planes 
and/or simple screw axes kl or kk-1 - and, in centrosym- 
metric crystal classes, 'free' centres of symmetry (Wilson, 
1988, § 5.1). When the two types are mixed, the space 
groups can be classified as 'tending to symmorphic', 
'equally balanced' or 'tending to antimorphic'. There is 
obviously the possibility of some ambiguity about the in- 
termediate classes: are planes and axes to be given equal 
weight? Does 21 exactly cancel m in P21/m or 2 exactly 
cancel c in P2/c ? Sometimes there is no doubt, for exam- 
ple when the cancellation is glide plane versus reflection 
plane or diad versus screw diad. All space groups 
with centred lattices except Cc are in the intermediate 
classes. 

1.3.1. A numericat index. If the cancellation just dis- 
cussed is accepted, a numerical index of degree of 
symmorphism can be constructed. An index that corre- 

sponds well With the subjective concept is the syntropic- 
symmetry fraction 

S = N s y n / ( N s y  n + Y a n t i )  , (1) 

where Nsyn is the number of syntropic symmetry ele- 
ments in the unit cell and Nant i  is the number of antitropic 
elements. This takes the value unity for the fully symmor- 
phic space groups and the value zero for the fully antisym- 
morphic; the rest give fractional values in the interven- 
ing range. In the monoclinic and orthorhombic systems, 
the same values are obtained by taking the N 's  (with a 
little care in counting!) from the tabulations of symme- 
try operations in the space-group entries in International 
Tables for Crystallography (Hahn, 1989) but it is diffi- 
cult to extend the latter procedure to the space groups of 
higher symmetry. For four space groups (P42, P62,a,4), 
the composite atropic screw axes must be broken down 
into their syntropic and antitropic components, as indi- 
cated in § 1.1.2. 

The index could be modified in various ways, such as 
by including the atropic screw axes in both the numerator 
and the denominator of (1) for all space groups in ~hich 
they occur, but there is no obvious advantage. Numerical 
indices of symmorphism are not used explicitly in this pa- 
per, but they have sometimes influenced the placing of a 
space group in Tables 1 to 7. 

When two related space groups are assigned to the same 
column in the tables, they are sometimes printed with the 
more nearly symmorphic one to the left and the more 
nearly antimorphic one to the right of the column. 

1.3.2. Single-member arithmetic crystal classes. 12 
arithmetic crystal classes contain only one space group 
each, and this gives rise to a paradox in nomenclature - 
the single member is symmorphic and it is also the only 
candidate for the title of 'antimorphic'. This is reason- 
able enough for space groups like C2 and R3, which con- 
tain both syntropicand_antitropic synunetry elements, but 
paradoxical for P3, P4  and P6, which contain only syn- 
tropic symmetry elements. The space groups of the single- 
member classes are arranged by degree of symmorphism 
in Table 1. 

1.3.3. Symmorphism and special positions. Inspection 
of International Tables for Crystallography shows that the 
space groups can be divided into four types on the basis 
of their special positions. 

1. Three space groups whose only special positions 
have symmetry 1 (P1, P21/c,  Pbca). For P-l, see the 
heading of Table 1; P1/c and Pbca are fully antimorphic. 

2. 13 space groups with no special positions (P1, P21, 
Pc, Cc, P212121, Pca21, Pna21, P41, P43, P31, P39, 
P61, P65). All are fully antimorphic. 

3.39 space groups, not included in 1 or 2, with at least 
one position of multiplicity unity. All have primitive cells 
(P  or R) and are symmorphic in the sense of § 1.1. How- 
ever, those with R cells 'tend to antimorphism', and only 
the space groups with few symmetry elements and P cells 
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Table 1. The space groups of the single-member arithmetic crystal classes arranged by degree 
of symmorphism 

For , ,  l" and the superscript numerals, see § 1.3.4. The triclinic space groups are a special case, with 'synlropic-symmetry fraction' undefined 
(S = 0/0), and they are not assigned to any particular column. 

m m m B l E B m  
1P 

TP 

2C 

222F 

4P *P4t ° 

3R 

3P *PIt ° 
]R 
32R 

6P *P6t ° 

23F 

, p i t  189 
,pTt594o 

, C 2 t  260 

,F222¢ ° 

* f a t  19 

,R3t 15 

, . R 3 t  53 

,R32t ° 

,F23t ° 

Table 2. Monoclinic space groups classified by degree of symmorphism 

For , ,  l" and the superscript numerals, see § 1.3.4. 

Arithmetic Fully Tending to 
crystal class symrnorphic symmorphism 

2P 

2C 

m P  

mC 

2 / m P  

2 /mC 

,p2 a 
... 

, pro  1 

.,. 

• P 2 / m  ° 

Equally 
balanced 

Tending to Fully. 
antimorphism antirnorphic 

, C 2 t  260 ... 

. . . . . .  

, G i n  I ... 

P21/m TM ... 
P2/d 4 

, C 2 / m  ° C2/ct  1456 

P 2 1 t  2552 

pet 138 

O c t  371 

P 2 1 / c t  13131 

are 'fully symmorphic'. The others with P cells 'tend to 
symmorphism'. 

4. The remaining space groups; they are neither fully 
symmorphic nor fully antimorphic. 

Examples of type (1) are very frequent, of type (2) are 
frequent and of type (3), except R3, are not common. 
The frequency of examples of type (4) has been discussed 
semi-seriously by Wilson (1992b) in terms of two sub- 
types; see also § 3.2 below. 

1.3.4. Asterisk, obelus, superscript. In many tables of 
this paper, the symmorphic space groups are marked with 
an asterisk • and the antimorphic with an obelus t. The 
superscript numbers following the space-group symbols 
approximate to the number of molecular organic struc- 
tures with a single molecule in the general position of the 
space group; their exact significance is explained in § 3, 
but they are indicated at this stage in order to give an im- 
pression of the relative frequencies of the space groups of 

structures governed primarily by packing considerations. 
A glance at the tables shows that organic molecules avoid 
the general positions in the space groups on the left (sym- 
morphic or tending to symmorphic) and prefer the general 
positions in the space groups on the right (antimorphic or 
tending to antimorphic). 

2. Symmorphism in the crystal systems 

2.1. The triclinic system 

The two triclinic space groups are included in Table 1. 
Neither is 'fully symmorphic' nor 'fully antimorphic' in 
the senses described above. Unlike the fully symmorphic 
space groups with k > 1, P ]  is very frequent and P1 is 
not rare among molecular organic compounds. The above 
discussion gives no basis for assigning them to any parti- 
cular column in Table 1, so the vertical divisions are omit- 
ted in the triclinic section of the table. 
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Table 3. Orthorhombic space groups classified by degree of symmorphism 

For , ,  t and the superscript numerals, see § 1 .3 .4 .  

Arithmetic Fully Tending to Equally Tending to Fully 
crystal class symmorphic symmorphism balanced antimorphism antimorphic 

2 2 2 P  ... P22121TM 

2 2 2 C  C 2 2 2 1 t  27 

2 2 2 F  ... 

2 2 2 I  ... 

m m 2 P  

m m 2 C  

2 m m C  

m m 2 F  

m m 2 I  

m m m P  

m m m C  

m m m F  

m m m I  

, P 2 2 2 1  

, P r o m 2  ° 

, P r n m m  ° 

P 2 2 2 ~  

, C 2 2 2  ° 

... 

... 

P m a 2  ° 

, C m m 2  ° 

, C 2 m m  ° 

P c c m  ° 

P m m a  ° 

, C m m m  ° 

, F 2 2 2  ° 

, I 2 2 2  a 

I 2 1 2 1 2 1 t  ° 

, F r o m 2  ° 

, I m m 2  ° 

PnTtTt. 0 

P b a n  ° 

P i n n a  ° 

P m m n  ° 

C m m a  ° 

, F m m m  ° 

, I m m m  ° 

Pmc211 

Pcc2 ° 
Pnc22  

P m n 2  ° 

P b a 2  a 

P n n 2  a 

C m c 2 ,  t 2 
Ccc22 

C 2 m b  1 
C 2 c m  ° 

C2cbt  19 

F d d 2 t  86 

I b a 2 t  28 

I m a 2  ° 
P n n a  9 

P c c a  s 

P b a m  2 
Pcc.n 96 

P bcm 4 

P n n m  ° 
P b c n  lss  

P n m a  13 
CmcTn 0 

C m c a  ° 
C c c m  ° 

Cccat 1 
F d d d t  2 

I b a m  ° 
I b c a  ° 

I m m a  ° 

/:r21212a 1 .s41° 

... 

... 

... 

P c a 2 ~  s9 

P na21~ T M  

Pbca~ 1798 

2.2. The monoclinic system 

The classification of the space groups in the mono- 
clinic system is given in Table 2. The system contains six 
syrmnorphic space groups (indicated by asterisks), cor- 
responding to its six arithmetic crystal classes, of which 
three (P2, Pro, P2/m) are fully symmorphic and three 
(C2, Gin, C2/m) are equally balanced. The fully sym- 
morphic space groups are all rare and the equally balanced 
ones are at best of moderate frequency. There are four 
fully antimorphic space groups (P21, Pc, Cc, P21/c);  
none are rare and one, P21/c ,  is the commonest organic 
space group. 

2.3. The orthorhombic system 

The classification of the space groups in the orthorhom- 
bic system is given in Table 3. The system contains 13 
symmorphic space groups, corresponding to its 13 arith- 
metic crystal classes, of which three (P222, Prom2, 
Pmmm)  are fully symmorphic and seven (F222,/222, 
C2mm, Imm2,  From2, I m m m ,  Fmmm)  are equally 
balanced. Three (C222, Cram2, Cmmm)  'tend to sym- 

morphism'. The fully symmorphic space groups and those 
tending to symmorphism are all rare and the equally bal- 
anced ones are at best of moderate frequency. There are 
four fully antimorphic space groups (P212121, Pna21, 
Pca21, Pbca), all common. In some cases, there is an ap- 
preciable difference in the 'degree of symmorphism' be- 
tween space groups in the same column, sometimes indi- 
cated by displacing the symbol to the left or to the right 
of the column. 

2.4. The tetragonal system 

The classification of the space groups in the tetragonal 
system is given in Table 4. There are no really frequent 
space groups. 

2.5. The trigonal system 

The classification of the space groups in the trigonal 
system is given in Table 5. The system contains 13 sym- 
morphic space groups, of which two (P3 and P3) are _fully 
symmo_rphic and six (P312, P321, P3m 1, P31 m, P3m 1 
and P31m)  'tend to symmorphism'. All space groups 
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Table 4. Tetragonal space groups classified by degree of symmorphism 

For , ,  t and the superscript numerals, see § 1.3.4. 

Arithmetic ' Fully i Tending to Equally Tending to Fully 
crystal class, symmorphic L symmorphism , Balanced , antimorphism antimorphic 

4P 

41 
~p 

4I 

4~rap 

4 / m I  

422P 

4221 
4romP 

4 m m I  

42mP 

"4m2P 

4m2I 

-42mI 

4 / m m m P  

4 / m m m I  

, p 4  o 

, p ~ O  

. . .  

• P 4 / m  ° 
. . .  

. , .  

P4~ 
. . ,  

, . .  

P42/m ° P4 /n  2 

,P422 ° 
P4222 ° 

. . .  

, P 4 m m  ° 

,P42m ° 

,P4m2 ° 

, P 4 / m m m  ° 

P42/mmc ° 

P42/mcm ° 

• I 4 / m m m  ° 

° . .  

141 t 4 

. o .  

,I~t TM 

P42/nt  3° 

P42t2 ° 
P41,3223 

14122~ ° 
P4bm ° 

P~2c o 

P421m ° 
p74c2 o 
P~b2 o 

P~n2 o 

, I 4m2  ° 

, I42m ° 
P 4 / mmc ° 

P 4 / n m m  ° 

, I47 
. . .  

. . .  

• 14/m ° I41/at  sg 

P41,32121 "92 

P422122 
,14220 

P42cm ° 
P%cm ° 
P4cc o 

P4nc ° 

P4mc ° 

P42bct ° 
, I 4 m m  ° 
I4cm o 

I 41md ° 

141cdt II 

P421ct 27 

I71c2t ° 

I'~2dt 1 

P4/nbm ° 

P 4 / nnc ° 

P4/mbn ° 

P4/ncc ° 

P42/nbc 1 
P42 /mbc ° 

P42 /mnm 0 

P42/nmc ° 

P 42 / ncrn ° 

I 4 / m c m  ° 

I 41/ amd ° 

I41/acdt 2 

P41,3~ 89 
. . ,  

Table 5. Trigonal space groups classified by degree of symmorphism 

For , ,  t and the superscript numerals,  see § 1.3.4. 

Arithmetic Fully Tending to 
crystal class symmorphic symmorphism 

3P 

3R 

~P 
~R 

312P 321P 

32R 

3 m l P  31raP 

3mR 

3 m l P  31raP 

3mR 

,p39 

, P 3 t  6 

. . .  

. . .  

. . .  

,P312 ° ,P3211 

• P3ml  ° , P 3 1 m  ° 

• P3ml  ° , P 3 1 m  ° 
. . .  

Equally 
balanced 

Tending to Fully 
antimorphism antimorphic 

° , .  

,R3t  15 

,R~t 5s 

P31,212t 1 P31,221t 17 

• R32t ° 

P3c l t  ° P31ct ° 
• R3m ° R3c# 2 

P3clt ° P31ct ° 
,R~mo R jet1 

P31,2t ss 

. . .  

. , .  

, . .  

. . .  

. . .  

. . .  

. . .  
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Table 6. Hexagonal space groups classified by degree of symmorphism 

F o r . ,  i" and the superscript numerals, see § 1.3.4. 

I 
Arithmetic Fully Tending to [ Equally Tending to Fully 
crystal class symmorphic symmorphism I balanced antimorphism antimorphic 

6P 
-~p 

6ImP 

622P 
6mmP 

6m2P -62raP 

6/mramP 

, p 6  o 
,pgj.o 

• P 6 / m  ° 
. . .  

. . .  

• P622 ° P62,422 ° 
,P6rnrn ° 

,P6m2 ° , p-~2m ° 

• P6/ramm ° 

P62, ~ P6~ 

P6z/mt  ° 
. . .  

. . .  

. . .  

. ° .  

° . .  

P63222 P6:,522t 2 
P6cc ° P63cc ° 

P63cm ° P63mc ° 

p-~c2t ° Pg2c.t ° 

P6/mcct ° 

P63/mcm ° P63/mmc ° 

P61,5~ 4e 

. . .  

. . .  

with R cells possess one triad axis and two triad screw 
axes, which exclude them from all columns except 'Tend- 
ing to antimorphic', though R32 comes close to being 
'Equally balanced'. The only fully antimorphic groups are 
the enantiomorphic pair P3:  2. Only a few have many e A- 
amples with Z'  (§ 3) equal to unity; P31,~ 8, R3:5, R3 ~°, 
P3:,22117 and R3c 12 are appreciably represented. All are 
in the antimorphic part of Table 5. 

2.6. The hexagonal system 

The classification of the space groups in the hexagonal 
system is given in Table 6. Only the fully antimorphic pair 
P6:,5 i "46 has an appreciable number of examples. 

2.7. The cubic system 

There are no space groups in the cubic system that are 
fully one or the other. The symmorphic space groups all 
have triad screw axes parallel to the cube diagonals and 
sometimes other antitropic elements. The situation is sim- 
ilar to that of the space groups with R cells (§ 2.5). Simi- 
larly, the antimorphic space groups have simple triad axes 
in the same orientation and sometimes other syntropic el- 
ements. 

The column headings in Table 7 have been adjusted ac- 
cordingly. No structures with Z'  = 1 were found and thus 
the superscript numbers (§ 3.1) are omitted. 

3. The Cambridge Structural Database 

The Cambridge Structural Database (Allen, Kennard & 
Taylor, 1983) contains a data file of organic structures, 
broadly defined, but stopping short of high-molecular- 
weight polypeptides and proteins. The data used here re- 
fer to the file as it was in January 1992, when it contained 
106 694 entries. The data vary widely in quality. For the 
present purpose, a selection was made, rejecting space 
groups not substantiated by a complete structure determi- 
nation or dubious because of disorder in the crystal. Struc- 
tures in which the binding was likely to have a large ionic 

component were rejected, as were duplicate determina- 
tions of the same structure. The numbers used here thus 
represent, as closely as the search programs allow, mole- 
cular organic structures with predominantly non-directive 
bonding between the molecules and thus structures likely 
to be determined predominantly by packing considera- 
tions. 

The database can be searched for the space group and 
for the number of formula units in the unit cell; unfortu- 
nately, the Wyckoff position is not explicitly recorded in 
the file. However, the file can be searched for the relative 
multiplicity 

Z t =  Z a c t u a l / Z g e n e r a l ,  (2) 

where Zactual is the actual number of formula units in 
the unit cell and Zgeneral is the multiplicity of the general 
Wyckoff position. If Z ~ is not an integer, some molecules 
must be in special positions. In general, Z '  -- 1 cor- 
responds to one molecule in the general position but it 
may also correspond to n molecules in special positions 
of multiplicity Z/n. In well populated space groups, the 
numbers thrown up by the search for Z' = 1 were ac- 
cepted but when the space group had few examples these 
were individually checked and if fractional molecules in 
multiple positions were involved a comment is made in 
the relevant paragraph. 

Similar considerations apply to non-integral values of 
Z'. An apparent value of Z'  = 1/m may result from n 
molecules in positions of multiplicity Zgeneral/nm. The 
molecular symmetry implied by any value of Z' must, 
therefore, be interpreted as the minimum symmetry of 
the molecule unless the actual structure determination has 
been consulted. 

Relative multiplicities in the ranges 0.5 < Z' < 1.0 
and Z' > 1.0 result from molecules occupying more than 
one Wyckoff position. 

3.1. Superscript numbers in the tables 

The number of structures with one formula unit in the 
unit cell is given as a superscript to the space-group sym- 
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Table 7. Cubic space groups classified by degree of symmorphism 

For • and t ,  see § 1.3.4 and, for the column headings, § 2.7. No exam ties with Z '  = 1 were found, so the superscn 

Arithmetic 
crystal class 

23P 

23F 

231 

m~P 
m~P 
m3I 
432P 

432F 

432I 

43raP 
43mF 

43mI 
m3mP 
m3raF 

m3mI 

Symmorphic 
except for 31 

,P23 

*Pro3 

. . .  

. . ,  

. , .  

. . .  

. . .  

Tending to 

symmorphism 
EquaUy 
balanced 

*F23¢ 

*I23 I213t 

Pn~ 
*Fro'3 

*Ira'3 

*F432 

.1432 

Tendingto 
anfimo~hism 

,P432 
. . ,  

, , .  

*P43m 
. . .  

o . ,  

*Pm3m 
*Fm3m 
*Im3m 

* F-43m 

,I43m 
Pm3n Pn3m 

. . .  

Fd~t 
Id~t 

P31,2t 
F4132¢ 

14132¢ 

P43n¢ 
F43c¢ 
/43d¢ 

PhOne 
F m ~  Fd3m 

Ia3dt 

Antimorphic 
except for 3 

P2~3f 
. . .  

. . .  

Pa3t 

. . .  

. . .  

Fd3c? 

~t numerals are omitted. 

bol in Tables 1 to 7. In Tables 8 to 15, the superscript in- 
dicates the number of molecules with the relevant value 
of the relative multiplicity Z'. 

3.2. Molecules in special positions 

If Z'  [(2)] is less than unity, some molecules must oc- 
cupy special positions and have the symmetry of those 
positions. In principle, the number of possible molecular 
symmetries is indefinitely large (Hahn & Klapper, 1989, 
pp. 780-786) but only the 32 symmetries of the geometric 
crystal classes can in fact be used by finite molecules in a 
crystal. If the free molecule has potentially a higher sym- 
metry, its actual symmetry will be degraded to a greater 
or a lesser extent by the intermolecular forces. In particu- 
lar, if two inherently centrosymmetric molecules are re- 
lated by a crystallographic centre of symmetry, they will 
be distorted to form a pair of non-centrosymmetric enan- 
tiomers and the resultant will be a dimer in a structural 
sense, though possibly not in a chemical sense. 

Examples of nearly all the geometric crystal classes can 
be found. The simpler ones, of multiplicity two (]-, 2, m), 
are frequent; those with multiplicities three, four or six 
(2/m, 222, ram, 4, 4, 3, 3, . . . )  are fairly frequent; and 
those with higher multiplicities ( m m m , . . . )  are rare. 

In a loose sense, if a crystal consists of molecules oc- 
cupying a special position, the packing is 'roughly as 
if' the symmetry of the space group were degraded to 
that of a subgroup lacking the molecular symmetry in 
question (Wilson, 1992b). The subgroup can usually be 
identified without difficulty by the entry 'Maximal non- 
isomorphous subgroups' in the space-group entries in In- 
ternational Tables for Crystallography, Volume A (Hahn, 
1989); in non-obvious cases, Fig. 10.3.2 is helpful. 

The analysis of numbers of examples of space groups 
classified by Z'  is given in Tables 8 to 15. 

Table 8. The space groups of the triclinic and monoclinic 
crystal classes arranged by relative multiplicity Z' 

In this and the following tables, a dash ( - )  indicates that the multiplic- 
ity is inconsistent with the space group; the numeral zero (0) indicates 
that the multiplicity is theoretically possible but that no examples were 
found. 

Relative multiplicity Z '  

Space 114 112 1 3/2 2 512 3 > 4 

group 2/m 1, 2, m 

1 P 1  - 189 - 172 - 0 30 

2 P1 1477 5946 24 996 1 37 28 

3 P2 0 0 3 0 0 0 0 

4 P21 - 2552 - 576 - 18 24 
5 (?2 87 260 4 39 0 1 3 

6 Pm 0 1 0 1 0 0 0 
7 Pc - 138 - 28 - 3 3 

8 (?m 18 1 3 0 0 0 0 

9 (?c - 371 - 45 - 7 5 

10 P2/m 0 0 0 0 0 0 0 0 
11 P21/m 215 16 2 0 0 0 0 
13 P2/c 66 74 2 22 0 0 0 

14P21/c 2658 13131 28 1108 0 42 17 

12 C2/m 107 45 0 0 0 0 0 0 

15 C2/c 1626 1456 27 49 0 7 1 

4. Utilization of special positions 
4.1. The triclinic system 

The numbers of structures in the two triclinic space 
groups, arranged by relative multiplicity Z' ,  are given in 
Table 8. As noted in the heading, in this and the follow- 
ing tables a dash (-) indicates that the multiplicity is in- 
consistent with the space group and a zero (0) indicates 
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Table 9. The space groups of the orthorhombic crystal 
class 222 arranged by relative multiplicity Z' 

For  the da.ch ( - )  and zero (0), see § 4.1. Relat ive mult ipl ic i ty  Z '  = 1 / 4  
im ~lies molecular  symmet ry  222;  Z ~ = 1 / 2  implies symmet ry  2. 

Space 

group 

16P222 

17P2221 

18P2t212 

19P212x21 

20C2221 

21C222 

22F222  

23 I222 

24 1212121 

1/4 1/2 

0 0 

Relative multiplicity Z t 

1 3/2 2 5/2 3 _> 4 

1 0 0 0 0 0 

0 0 1 0 0 0 0 

69 114 2 13 0 0 0 

- 5410 - 329 16 10 

33 27 1 0 0 1 0 

0 0 0 1 0 0 0 

0 0 0 0 0 0 0 

0 3 0 0 0 0 0 

1 0 0 0 0 0 0 

Table 10. The space groups of the orthorhombic crystal 
class mm arranged by relative multiplicity Z' 

For  the dash ( - )  and  zero (0), see § 4.1. 

Relative multiplicity Z '  

Space 1/4 1/2 1 3/2 2 5/2 3 > 4 

group m m  2, ra 

25 Pmm2 

26 Pmc2t 

27 Pec2 

28 Pma2 

29 Pca21 

30 Pnc2 

31 Pmn21 

32 Pba2 

33 Pna21 

34 Pnn2 

35 Cmm2 

36 Cmc21 

37 Ccc2 

38 C2mm 

39 C2mb 

40 C2cra 

41 C2cb 

42 From2 

43 Fdd2 

44 Imra2 

45 Iba2 

46 Ima2 

0 0 0 0 0 0 0 0 

3 7 0 0 0 0 0 

0 1 0 0 0 0 0 

- 0 0 0 0 0 0 0 

- - 289 97 - 1 2 

- 2 2 0 0 0 0 0 

- 36 0 0 0 0 0 0 

- 9 3 0 2 0 0 0 

- 748 83 - 3 1 

- 9 3 0 3 0 0 0 

0 0 0 0 0 0 0 0 

- 71 2 0 0 0 0 0 

- 4 0 0 0 0 0 0 

2 3 0 0 0 0 0 0 

- 3 1 0 0 0 0 0 

- 6 0 2 0 0 0 0 

- 32 19 2 0 0 0 0 

6 0 0 0 0 0 0 0 

- 99 86 1 1 0 0 0 

1 0 0 0 0 0 0 0 

- 11 28 0 3 0 0 1 

- 3 0 0 0 0 0 0 

that the multiplicity is possible but that no examples were 
found. Space group P1 cannot have Z' fractional; it has 
189 examples with Z t --- 1 and over 200 with Z' > 2. The 
obvious suspicion is that there are printing or other errors 
and that the examples with Z' = 2 really belong to P1. A 

Table 11. The space groups of the orthorhombic crystal 
class mmm arranged by relative multiplicity Z' 

For  the dash ( - )  and  zero (0), see § 1.4. Space groups 47, 65, 69 and 71 
have the possibil i ty of Z ~ = 1 / 8 ;  F m m m  (69) has a s ingle  example.  

Space 
group 

47 Pmmm 

48 Pnnn 

49 Pccm 

50 Pban 

51 Pmma 

52 Pnna 

53 Pinna 

54 Pcca 

55 Pbam 

56 Pccn 

Relative multiplicity Z'  

1/4 1/2 1 3/2 

0 0 0 0 

222 2 0 0 0 

0 0 0 0 

222 2 0 0 0 

0 0 0 0 

- I ,  2 25 9 0 

2/m 4 2,m 1 0 0 

- T, 2 10 8 0 

2/m 1 2, m 4 2 0 

- 1, 2 90 96 0 

57 Pbcm 

58 Pnnm 

59 Pmmn 

60 Pbcn 

61 Pbca 

62 Pnma 

63 Cmcm 

64 Cmca 

65 Cmmm 

66 Ccem 

67 Cmma 

68 Ccca 

69 Fmmm 

70 Fddd 

71 Immm 

72 Ibam 

73 Ibca 

74 Imma 

- 1 ,2,m 44 4 

2/m 13 l , m  5 0 

rnrn 11 l ,  rn 1 0 

1,2 276 158 

T 268 1798 

1, m 673 13 

2/m, mm 43 0 0 

2/m 35 1,2,rn 18 0 

0 0 0 

0 2,m 2 0 

222, 2/m 1 0 

222 8 T,2 2 

0 0 

222 9 1,2 6 

0 0 

222,2/m 17 1,2, m 4 

- 1 ,2  3 

2/m, mm 4 0 

0 

0 

0 

2 

0 

0 

0 

0 
0 

0 

0 0 

1 0 

0 0 

2 0 

0 0 

0 0 

0 0 

0 0 

2 5/2 3 _> 4 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

5 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

5 0 2 0 

78 0 1 1 

1 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

ror would be plausible but a high proportion of the papers 
commented that the molecules were related by some kind 
of pseudosymmetry such as 2 or 1. A full study of such 
structures might be interesting, but it has not been under- 
taken. One possible explanation is that two fairly unsym- 
metrical objects can be combined into a less unsymmetri- 
cal structural dimer by these symmetry elements and thus 
facilitate packing. A simple example is the yin/yang cir- 
cle: 

Roughly equidimensional pseudodimers can be arranged 
more compactly than if the monomers all had the same 
orientation. 

4.2. The monoclinic system 

The relative multiplicities for the monoclinic system 
check of the structures reported inActa Crystallographica are given in Table 8. For most space groups, Z' = 1 is 
Sections B and C showed only two for which such an er- the commonest relative multiplicity. The exceptions are 
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Table 12. Use of molecular symmetry in the tetragonal 
system 

S p a c e  g r o u p s  for  w h i c h  n o  e x a m p l e s  w e r e  f o u n d  are  o m i t t e d .  T h e  m i n -  

i m u m  s y m m e t r y  i m p l i e d  b y  t h e  m u l t i p l i c i t y  is  ind i ca ted .  For  the  d a s h  

( - )  a n d  z e r o  (0) ,  s e e  § 4 .1 .  

Table 13. Use of molecular symmetry in the trigonaI 
system 

S p a c e  g r o u p s  for  w h i c h  n o  e x a m p l e s  w e r e  f o u n d  are o m i t t e d .  T h e  m i n -  

i m u m  s y m m e t r y  i m p l i e d  b y  the  m u l t i p l i c i t y  i s  i n d i c a t e d .  F o r  the  d a s h  

( - )  a n d  z e r o  (0) ,  s e e  § 4 .1 .  

Relative multiplicity Z '  

1/16 1/8 1/4 1/2 1 514 312 
Space group 4 / m m m  4 / m  4,4 2 

2 4 

75 P 4  - - 1 1 0 0 0 1 0 
76,78 P41,3 - - - 89 - - 7 1 

77 P42 - - - 3 3 0 0 0 0 

79 I 4  - - 2 0 7 0 0 0 0 

80 I41 - - - 8 4 0 0 2 1 

81 P 4  - - 0 4 0 0 0 2 0 

82 I 4  - - 18 2 19 0 0 1 0 
83 P 4 / m  - 1 0 0 0 0 0 0 0 

84 P 4 2 / m  - - 1 0 0 0 0 0 0 

85 P 4 / n  - - 4 1 2 0 0 0 0 

86 P 4 2 / n  - - 20 28 30 1 0 0 0 

87 I 4 / m  - 12 0 1 0 0 0 0 0 

88 I 4 1 / a  - - 39 38 59 1 0 1 0 

91 ,95P41 ,322  - - - 0 3 0 0 0 0 
92 ,96P41,3212 - - - 108 92 0 0 3 1 

94 P42212  - - 2 2 2 0 0 0 0 

98 14122 - - 0 1 0 0 0 0 0 
101 P 4 2 c r n  - - - 1 0 0 0 0 0 

102 P 4 2 n m  - - 2 2 0 0 0 0 0 

104 P 4 n c  - - 3 - 0 0 0 0 0 

106 P42bc  - - - 1 0 0 0 0 0 
107 I 4 m m  - 2 - - 0 0 0 0 0 

109 I 4 1 m d  - - 1 2 0 0 0 0 0 

110 I41cd  - - - 8 I1 0 0 0 0 

112 P 4 2 c  - - - 1 0 0 0 0 0 

113 P 4 2 1 m  - - 7 2 0 0 0 0 0 

114 P421e  - - 38 5 27 0 1 1 0 

117 P462  - - 1 I 0 0 0 0 0 

118 P 4 n 2  - - 3 3 0 0 0 0 0 

120 I-4c2 - - - 1 0 0 0 0 0 

121 I 4 2 m  - 7 1 - 0 0 0 0 0 

122 I 4 2 d  - - 7 9 1 0 0 0 0 

124 P 4 / m c c  - - 1 1 0 0 0 0 0 

126 P 4 / n n e  - 2 2 1 0 0 0 0 0 

128 P 4 / m n c  - - - 1 0 0 0 0 0 

130 P 4 / n c c  - - 3 2 0 0 0 0 0 

132 P 4 2 / m c m  - 1 - - 0 0 0 0 0 

133 P 4 2 / n b c  . . . .  1 0 0 0 0 

134 P 4 2 / n n m  - 1 - - 0 0 0 0 0 

135 P 4 2 / m b c  - - 1 - 0 0 0 0 0 

136 P 4 2 / m n m  - 6 - - 0 0 0 0 0 

137 P 4 2 / n m c  - 2 - - 0 0 0 0 0 

139 1 4 / m m m  1 - - - 0 0 0 0 0 

141 I 4 1 / a m d  - 6 1 - 0 0 0 0 0 

142 I 4 1 / a c d  - - 11 6 2 0 0 0 0 

the space groups with mirror planes (Pro, Urn, P2/m, 
P21/m, C2/m); for these either the mirror plane is used 
or the space group has few examples. 

4.3. The orthorhombic system 

The relative multiplicities for the orthorhombic space 
groups are given in Tables 9-11. The assumption that 
most structures have molecules in general positions is 
confirmed only for the fully antimorphic space groups, 

Space group 

143 P 3  

144,145 P31,2 
146 R3 

147 P 3  

148 R3 

151,153 P31,212 
152,154 P31,221 
156 P 3 m l  

159 P31c  

160 R 3 m  

161 R3c  

163 P'31c 

165 P 3 c l  

166 R 3 m  

167 R'3c 

1112 

3 m  

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

2 
- 

Relative multiplicity Z' 

1/6 1/3 112 213 1 4/3 2 > 3  

3,32,3m 3 1,2,m 3 

- 0 1 9 0 0 0 

- - - 58 2 2 
- 28 3 15 0 7 0 

0 20 3 0 6 0 0 0 

37 41 18 2 53 0 1 2 

- - 0 - 1 0 0 
- - 32 - 17 1 0 
- 0 1 0 0 0 0 0 

- 0 1 0 0 0 0 

10 - 0 - 0 0 0 

- 39 1 12 1 0 1 

4 0 0 0 0 0 0 0 

1 0 6 0 0 0 0 0 

2 - 0 - 0 0 0 

15 2 1 0 1 0 0 0 

(P212121, Pea21, Pna21, Pbca), plus one tending to 
antimorphism (P21212). For most other space groups, 
Z' = 1/2 or 1/4 is more frequent; for Pccn, Z' --- 1 is 
marginally more frequent than Z' -- 1/2. The frequencies 
in the arithmetic crystal classs mmmP have already been 
discussed (Wilson, 1991). Those given here are mostly 
slightly higher because of the growth of the database in the 
two years 1990-1992 but the overall picture is unchanged. 

4.4. The tetragonal system 

The relative multiplicities for the tetragonal space 
groups are given in Table 12. Molecular symmetries 2, 
4 and 4 are frequently used. 

4.5. The trigonalsystem 

The relative multiplicities for the trigonal space groups 
are given in Table 13. The only special positions in the 
space group P3 (143) have symmetry 3. All nine struc- 
tures with Z' = 1 turn out to have three molecules of 
symmetry 3 in three special positions and the single struc- 
ture with Z' -- 2 /3  has two such molecules. The situa- 
tion for P 3  (147) is more complex as it has special posi- 
tions of symmetry ]-, 3 and 3. That of symmetry 3 is the 
most frequent; the 20 examples with Z' -- 1/3 all contain 
two molecules with this symmetry. Three ex_amples with 
Z' = 1/2 have three molecules of symmetry 1. 

4.6. The hexagonal system 

The relative multiplicities for the hexagonal space 
groups_are given in Table 14. The system is relatively rare; 
3 and 3 are the molecular symmetries frequently used. 
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Table 14. Use of molecular symmetry in the hexagonal 
system 

Space groups for which no examples were found are omitted. The min- 
imum symmetry  implied by the multiplicity is indicated. For the dash 
( - )  and zero (0), see § 4.1. 

Space group 

169,170 P61,s 
171,172 P62,4 
173 P63 
174 P6 

176 P 6 3 / m  

178,179 P61,s22 
180,181 P62,422 
182 P6322 
185 P6acm 
186 P6amc 

190 P-62c 

192 P 6 / m c c  

193 P 6 3 / m c m  

Relative multiplicity Z'  

1/12 1/6 1/4 1/3 1/2 1 4/3 3/2 
62m,3m 6,3 222 3 1,2,m 

- - - 4 6 .  

- - - 0 2 0 

- 1 6  - 3 1 

0 1 0 0 0 0 
1 2 1  - 0 6 0 0 0 

- - 6 2 0 

1 - 0 0 0 

0 - 0 0 2 0 0 
1 - 0 0 0 0 0 

5 0 0 0 

1 0 1 0 0 

0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 

Table 15. Use of molecular symmetry in the cubic system 

Space groups for whch no examples were found are omitted. For the 
dash (-)  and zero (0), see § 4.1. Implied minimum symmetries are indi- 
cated. 

Space group 

197 123 
198 P213 
204 I m 3  

205 Pa3 

206 Ia3 

212,213 P41,a32 
217 I43m 

218 P'43n 

219 F43c 

220 I43d 

222 Pn3n  

224 P n 3 m  

227 Fd3m 

230 Ia3d 

Relative multiplicity Z'  

1124 1112 118 1/6 1/4 113 1/2 

43m 23 m m m A 2 . 2  3 4,222 3 T,2 

1 0 - - 0 - 0 

. . . . .  4 0 
0 - m m m  4 0 - - 0 

- - - l l  - 1 0  - 

- - - 0 - 3 0 

- - - 1 - 1 0 

4 0 0 0 0 - 0 

- 0 - 1 1 0 

- 3 - - 0 0 0 

. . . .  42  5 - 
0 - 422 3 2 0 0 0 
1 0 0 0 0 - 0 

3 0 - 0 0 - 0 
- - 0 0 0 21 

4.7. The cubic system 

The relative multiplicities for the cubic space groups 
are given in Table 15. Molecular symmetries 3 and 3 are 
frequently used; the absence of any examples with Z'  = 1 
is notable. 

5. Status of the statistical model 

In previous papers, Wilson (1988, 1990, 1991) has dis- 
cussed the factors that, on statistical analysis, appear to 
govern the relative frequency of occurrence of the space 
groups of molecular organic crystals. In its developed 
form (Wilson, 1990), the statistical model postulated that, 
within an arithmetic crystal class (Wilson, 1992a), the 
number of examples, Nsg, of a space-group type de- 
pended exponentially on the numbers of symmetry ele- 
ments within the unit cell, thus: 

(3) 

In this equation, A is a normalizing constant depending on 
the arithmetic crystal class, [ej]sg is the number of sym- 
metry elements of type ej within the unit cell in the space 
group and Bj is a parameter depending on the arithmetic 
crystal class and the symmetry element e j; A and Bj 
are independent of the space group. The program GLIM 
(Baker & Nelder, 1978) was used to evaluate the parame- 
ters. Empirically, Bj has a positive sign for the syntropic 
symmetry elements (k and k, where n = 2, 3, 4, 6) and a 
negative sign for the antitropic symmetry elements (glide 

planes and screw axes). Often, however, laws of 'conser- 
vation of symmetry elements', of the type 

[2] + [21] = c, (4) 

or, in general, 

E [ e j ]  = c, (5) 
J 

where c is a constant for the crystal class, eliminate a sepa- 
rate dependence on one or more of the ej 's (Wilson, 1990, 
§§ 1.1, 5.1). 

The model fitted the observed frequencies of the 
space groups within the usual crystallographic range 
(R2 < 0.05) but, for some classes (in particular mmm),  
statistical tests based on the scaled deviance indicated 
residual systematic error (Wilson, 1980). This was traced 
(Wilson, 1991) to the failure of an explicit postulate (ab- 
breviated from Wilson, 1988, § 4.2): 

'The second possibility is that the distribution is seri- 
ously affected by molecular symmetry. Some molecules 
possess inherent symmetry ..., and this symmetry could 
coincide with the corresponding crystallographic symme- 
try element, again increasing the variance and/or bias of 
the number of examples per space group .... The compar- 
ative rarity of utilization of molecular symmetry suggests 
that it can be ignored in an exploratory statistical survey 
, , . . '  

This procedure was perhaps reasonable in a first 'ex- 
ploratory' survey but the use of inherent symmetry has 
been found to be very frequent in some space groups, as 
discussed in § 4 above. It is therefore necessary to ask if 
the statistical model is still useful if applied to the fre- 
quencies of space groups with Z'  -- 1 - the situation 
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Table 16. Observed and calculated frequencies o f  struc- 
tures with Z'  = 1 in the geometric class m m  

The values of the parameters of the fit are also given, along with those 
found for structures unsorted by Z (Table 4 of Wilson, 1990). 

Arithmetic 
crystal class Space group 

m m 2 P  

m m 2 C  

2mmC 

m m 2 F  

m m 2 I  

Frequency Frequency 
observed calculated E.s.d. 

25 P m m 2  0 0 1 
26 Pmc21 7 0 2 
27 Pcc2 1 1 1 
28 P m a 2  0 0 1 
29 Pca2t 289 289 15 
30 Pnc2 2 1 2 
31 P m n 2 t  0 0 1 
32 Pba2 3 3 2 
33 Pna21 748 748 17 
34 Pnn2  3 3 2 

35 C m m 2  0 0 1 
36 Cmc21 2 2 2 
37 Ccc2 0 0 1 

38 C 2 m m  0 0 1 
39 C2mb 1 0 1 
40 C2cm 0 0 1 
41 C2cb 19 19 4 

42 From2 0 1 1 
43 Fdd2 86 86 9 

44 I m m 2  0 0 1 
45 Iba2 28 28 5 
46 Ima2  0 0 1 

Parameter Value 

Free diad 
Encumbered diad 
Free screw diad 
Mirror plane 
m m 2 P  
m m 2 C  
2 m m C  
m m 2 F  
m m 2 I  

E.s.d. Value (1990) E.s.d. 

-4.54 0.47 -3.32 0.52 
-5.50 0.85 -4.99 0.44 

0.95 0.06 0.77 0.06 
-8.13 2.29 -3.15 0.20 
Set to zero 
- 1.03 1.36 0.06 0.15 

0.03 0.48 0.43 0.26 
0.58 0.25 0.55 0.14 
0.41 0.46 0.22 0.28 

11.8 5.1 24.1 5.1 
0.009 - 0.40 - 

13 - 13 - 

Scaled deviance 
R2 
Degrees of freedom 

postulated when the model was first developed. In this 
context, 'useful' means (1) that the model fits the data 
within the limits to be expected from sampling fluctua- 
tions and (2) that the parameters of the fit are not small in 
comparison with their program-estimated standard devia- 
tions. Condition (1) is fulfilled throughout the monoclinic 
and orthorhombic crystal systems. As already noted for 
the arithmetic class m m m P  (Wilson, 1991), condition 
(1) is better fulfilled for the examples with Z' = 1 than 
for examples not sorted by Z'; R2 falls to trivial values 
(0.000 for the monoclinic cohort, 0.001 for 222, 0.009 for 
m m  and 0.003 for m m m ) .  The discrepancy between the 
observed and calculated frequencies rarely exceeds two 
units. In view of the small observed frequencies, it has 
not been thought worth while to attempt fits for the more 
symmetric crystal systems. Even for the less-symmetric 
systems, it would be tedious to reproduce tables equiva- 
lent to Tables 1, 3, 4 and 5 of Wilson (1990) but as an 
example the equivalent of Table 4 (geometric class ram) 

is given in Table 16; the parameters from the earlier pa- 
per are included for comparison. Table 16 exhibits some 
features worth discussing. 

1. The parameter corresponding to Ira] has more than 
doubled and it has become less well defined. 

2. The parameters corresponding to the three types of 
diad are of the same order of magnitude as they were for 
the unsorted cohort. 

3. With the possible exception of m m 2 F ,  the parame- 
ters corresponding to the arithmetic crystal classes are not 
significantly different from zero. 

4. Except for Pmc21,  the observed and calculated fre- 
quencies agree within one unit. 

The large negative value of the parameter cor- 
responding to [m] is practically equivalent to the 
KHTaVtropo,~cKm~ (1955) criterion that structures in- 
volving stacking of layers by mirror planes are 'impos- 
sible'. The more moderate negative value of the param- 
eters corresponding to [2] is equivalent to his criterion 
that stacking of layers related by diad axes is 'permissi- 
ble' (possible but rare) but, in addition, they give numeri- 
cal estimates of the inhibiting effect. Though the parame- 
ters corresponding to the arithmetic crystal classes are not 
large, equating them to zero markedly worsens the agree- 
ment; the largest discrepancy rises to 16, though R2 and 
the scaled deviance still have tolerable values (0.025; 22.9 
with 17 degrees of freedom). 

The large discrepancy (seven units) for Pmc21 is read- 
ily explained by the consideration following equation (2). 
One reference was not readily accessible but the six con- 
suited all showed two independent molecules using mirror 
symmetry. Though not directly relevant, the consultation 
of the original papers showed that a remarkably high pro- 
portion of the structures in this space group with Z'  = 0.5 
and Z' = 1 formed chains or polymers parallel to the 21 
axis. 

I am indebted to Professors Carolyn Brock and Jack 
Dunitz for helpful correspondence. 
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Abstract 

It has long been known that there exists an infinite 
number of types of tile-transitive periodic three- 
dimensional tilings. Here, it is shown that, by con- 
trast, the number of types of face-transitive periodic 
three-dimensional tilings is finite. The method of 
Delaney symbols and the properties of the 219 
isomorphism classes of crystallographic space groups 
are used to find exactly 88 equivariant types that fall 
into seven topological families. 

O. Introduction 

Consider the three-dimensional Euclidean space ~3. 
A point-set P C~  3, together with a finite family F(P) 
of faces f C P, is called a topological polyhedron if it 
satisfies the following conditions: 

(P1) the set P is homeomorphic to the unit ball 
= {x  3llx I ~ 1}; 

(P2) the union of faces covers the boundary of P, 
i.e. Uf~F(t ,)f= OP; 

(P3) each face f~F(P)  is homeomorphic to the 
disc D: = {x e  =llxl-< 1}; 

(P4) the intersection of any number of distinct 
faces is either empty, a point (called a vertex) or an 
arc (called an edge), that is, homeomorphic to the 
interval I: = {x ~  llxl-< 1}; 

(P5) each face contains at least three vertices. 
Note that it follows from these conditions that - 

dually to (P5) - each vertex is contained in at least 
three edges. 

* Email address: jordan@mathematik.uni-bieIefeld.de 
t Email address: huson@mathematik.uni-bielefeld.de. Author 

to whom correspondence should be addressed. 

© 1993 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

A system ,J-= {PbP2,P3, ...} of topological polyhe- 
dra (called tiles) is called a (face-to-face) tiling of ~3, 
or three-dimensional tiling, if it satisfies the following 
conditions: 

(T1) the tiling covers space, i.e. U ~ ,-P = ~3.  

(72) the intersection of any two distinct tiles P and 
P '  is either empty, a common vertex, a common edge 
or a common face. The tiles, faces, edges and vertices 
associated with ,¢-are called the constituents of .J-(of 
dimension 3, 2, 1 and 0, respectively). 

A three-dimensional tiling J is called periodic if 
there exists a discrete group F of isometries of E 3, 
containing three linearly independent translations, 
i.e. a crystallographic space group, such that 

.s-=y,c-:={yP[PE.~-} for all y ~ F  (with yP:= 
{ y p p ~  P}, of course) and F(yP)= yF(P) for all 
P E ,¢-and  y ~ F. In this case, the pair (y-,F) is an 
equivariant tiling as defined by Dress (1984, 1987). 

More specifically, i f -  as above - . 7  is a three- 
dimensional tiling and if F is a crystallographic 
group, then we call the pair (t-,F) an equivariant 
three-dimensional tiling.$ Two equivariant three- 
dimensional tilings (~,F) and (.7-',F') are called 
topologically equivalent (or are described as being in 
the same topological family) if there exists a homeo- 
morphism ~0:~3.__,~3 that maps the tiles of one tiling 
onto the tiles of the other, i.e. if ~o./-=.T'. If, addi- 
tionally, F '  = ~oF~o-~ holds, then the two are called 
equivariantly equivalent. 

:1: Even more specifically, such a pair should be called an equi- 
variant Euclidean three-dimensional tiling, where the term 
Euclidean indicates that the group F is supposed to consist of 
isometrics with respect to the Euclidean metric of ~3 (as opposed 
to arbitrary groups of homeomorphisms of ~3). 
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